
 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nasdaq 
CTCI WebSphere MQ V1.1 

Subscriber Intercommunication Specification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Version 1.2 
 

July 2002 
 
 

 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 2  
 

 

 
 

Confidentiality/Disclaimer 
 

This Specification is being forwarded to you strictly for informational purposes 
solely for the purpose of developing or operating systems for your use that 
interact with systems of The Nasdaq Stock Market, Inc. (Nasdaq) and its 
affiliates (collectively, the Corporations).  This specification is proprietary to 
Nasdaq.  Nasdaq reserves the right to withdraw, modify, or replace the 
specification at any time, without notice.  No obligation is made by Nasdaq 
regarding the level, scope, or timing of Nasdaq’s implementation of the functions 
or features discussed in this specification.  The specification is "AS IS", "WITH 
ALL FAULTS" and Nasdaq makes no warranties, and disclaims all warranties, 
express, implied, or statutory related to the specifications.  THE CORPORATIONS 

ARE NOT LIABLE FOR ANY INCOMPLETENESS OR INACCURACIES.  THE CORPORATIONS ARE 

NOT LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES RELATING TO 

THE SPECIFICATIONS OR THEIR USE.  It is further agreed by you by using this 
specification, that you agree not to copy, reproduce, or permit access to the 
information contained in, the specification except to those with a need-to-know for 
the purpose noted above.  Copyright 2002, The Nasdaq Stock Market, Inc., as an 
unpublished work. All Rights Reserved. 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 3  
 

 

TABLE OF CONTENTS 
 
  

Purpose of this Document………………………………………………………………………4 
 
CTCI-MQ Interface Connection Topology…………………………………………………….5 
 
CTCI-MQ Interface Setup…………………………………………………………….…………6 
 
CTCI-MQ Interface Message Format and Flow 
 CTCI-MQ Message Format……………………………………………….…………..7 
 DTU Format………………………………………………………………….…………8 
 Sending a CTCI Message…………………………………………………………….9 
 CTCI Message Sequence Verification……………………………………………..10 
 
CTCI-WebSphere MQ Management 
     MQ Configuration…………………………..………………………….………….…..11 
 CTCI Physical Connectivity………………………………………………………….13 

Connection Establishment and Recovery……………..…………….…..…………14 
 CTCI-MQ Configuration Management……………………………….……………..16 
 CTCI-MQ Programming Management……………………………….………….….17 
 Authentication………………………………………………………….………………18 
 Naming Conventions………………………………………………….………………21            
 
Testing Procedure………………………………………………………………………………22 
 
Maintenance of CTCI-MQ Entities ……………………………………………………………23 
 
  
Appendix A 
        Sample MQ Definitions at Nasdaq and Remote Subscriber……………………...24 
 
Appendix B 
     Nasdaq MQ Definitions Form for Subscribers ……………………………………..26  
 
Appendix C 
 Sample Subscriber Channel Security Exit Source Code……………..………..….28 
 
Appendix D 
     References…………………………………………………………………………..….32 
.. 
Appendix E 
 CTCI-MQ Errors………………………………………………………………….……..33 
 
Appendix F 
         Glossary………………………………………………………………………..………..34 
 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 4  
 

 

Purpose of This Document 
 
This document describes how a subscriber can submit and receive Computer to Computer  
Interface (CTCI) messages utilizing the NASDMS (Switch) through IBM WebSphere MQ (formerly 
MQ Series) Middleware using WebSphere MQ API calls over TCP/IP protocol. This document also 
describes the required CTCI-MQ intercommunication specifics for a subscriber. 
 
The CTCI-MQ Interface discussed in this document employs the WebSphere MQ Distributed 
Queuing technique.



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 5  
 

 

CTCI-MQ Interface Connection Topology 

M
Q
I

M
C
A

T
C
P
/
I
P

.

.

.

.

.

Nasdaq Tandem CTCI Node(s)

.

.

.

.

.

.

.

.

IP

.

.

.

.

.

.

.

.

C
O
M
M
.
C
N
T
R
L
R
S

MQLH

MQLH

MQLH

R
E
M
O
T
E

M
Q

H
A
N
D
L
E
R
S

 
MCA- Message Channel Agent 
MQI – Message Queuing Interface 
TCP/IP – TCP/IP stack 
MQLH – WebSphere MQ Line Handler at Nasdaq 
 
 
MQLH is the line handler at Nasdaq that communicates with the remote line handler at the remote 
subscriber. This MQLH communicates with the remote MQ line interfaces through a remote/local 
queue pair. There is a one-to-one correspondence between the remote/local queue pair and the 
origin/destination station-id (device-id).  
 
 
 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 6  
 

 

CTCI-MQ Interface Setup 
 
Before attempting to establish a connection over WebSphere MQ, the subscriber must contact 
Nasdaq to obtain the four relevant IP addresses: two for the Primary and Alternate links and two for 
the disaster recovery site.  Each client will also be assigned a fixed port number in the range of 
40500 – 40700. A client profile must be established for each IP address assigned to a subscriber.  
This involves assigning as many remote/local queue pairs as the subscriber will use to exchange 
CTCI Messages with Nasdaq.   
 
Over one active MQ remote/local queue pair, a subscriber can submit and receive CTCI Messages 
on behalf of one station/device location.  For each of the stations or device locations that the 
subscriber will be submitting and receiving CTCI Messages on behalf of, the subscriber and 
Nasdaq will assign remote/local queue pairs.  Every station has its own unique application 
sequence numbering scheme (refer to “Subscriber Requirements for Computer to Computer 
Interface Utilizing the NASDMS Switch” documentation). 
 
Detailed MQ Configuration of WebSphere MQ entities are discussed in the CTCI WebSphere MQ 
Configuration Management Section. Note that a Nasdaq-supplied MQ Form helps the subscriber to 
define the MQ entities required for this interface. (See Appendix B of this document.) 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 7  
 

 

CTCI-MQ Interface Message Format and Flow 
 
CTCI-MQ Message Format 
 
The CTCI-MQ Message is the complete MQ message flowing between Nasdaq and the  
subscriber. The CTCI-MQ Message has an MQ header followed by a Data Transfer Unit (DTU). 
 

MQ-Header  
  

MQ-Header  
  

Data Transfer Unit (DTU)  
  

CTCI-MQ Message

 
The underlying MQ API call builds the MQ Header. However, the various entities of the 
MQ Header have to be set programmatically prior to every MQPUT and MQGET. (See CTCI-MQ 
Programming Management section.) 
 
The DTU is the data that would be built, sent, and received by the MQLH-Nasdaq MQ 
Line Handler. (See Data Transfer Unit section.) 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 8  
 

 

CTCI-MQ Interface Message Format and Flow 
 
DTU Format 
 
The DTU  sends and receives CMS Messages through the MQ CHANNEL pair. The DTU consists 
of a message “envelope” and CTCI message data.   
 

Message
Data

Message
Length

(4 bytes)

CTCI-MQ 
Version

(2 bytes)

Message
Envelope

Unused
Reserved

(6 bytes)

CTCI Message
Data

(1024 bytes max)

 
 
Message Length is a four-byte field that contains the total length of the DTU, including the length of 
the Message Length field at the beginning.  Currently, the largest CTCI Message Data that can be 
sent by the subscriber is 1024 bytes. Hence, the maximum value of message length would be 1036. 
  
Version is the two-byte CTCI-MQ implementation version number. Currently it is version 11 (1.1). 
Note that this is different from the WebSphere MQ version defined in the MQ Header. 
 
If the DTU data length exceeds 1036, the data will be truncated and returned as an application error 
to the originator. 
 
All fields defined here will be in ASCII. WebSphere MQ data conversion – MQGMO_CONVERT will 
be used. (See page 17.) 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 9  
 

 

CTCI-MQ Interface Message Format and Flow 
 
Sending a CTCI Message 
 
CTCI Messages are formatted as usual (refer to the “Subscriber Requirements for Computer to 
Computer Interface Utilizing the NASDMS Switch” documentation), but when delivered, they must 
be imbedded in a CTCI Message “envelope.”  
 
Here is an example of a 100-byte long CTCI Message sent across a particular remote/local queue 
pair for a origin/destination station pair: 
 

CTCI-MQ
Version

(2 bytes)
Value: 11

Unused 
Reserved

(6 bytes)
Value: nulls

CTCI Message

(100 bytes)

Value: the actual CTCI message starting with line zero, line 1, line 2, etc.

CTCI Message
Data

(100 bytes)

Message
Length

(4 bytes)
Value: 0112

 
 

The Unused field is an ASCII field that should always be filled with ASCII spaces (blanks). 
 
CTCI Message is the CTCI Message Data, formatted as usual to start at the beginning of line zero, 
as described in the “Subscriber Requirements for Computer to Computer Interface Utilizing the 
NASDMS Switch” documentation. 
 
 
 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 10  
 

 

CTCI-MQ Interface Message Format and Flow 
 
CTCI Message Sequence Verification 
 
It is the responsibility of the subscriber to detect and recover lost data by implementing CTCI 
Message sequence number checking and message retrieval processing.  Every station has its own 
sequence numbering scheme (0001 to 9999 and wrapping back to 0001 after 9999). Refer to the 
“Standard Input” and “Standard Output” links located on the CTCI Specifications page at 
http://www.nasdaqtrader.com/asp/ctcidisclaim4.asp for a detailed description of these procedures.  



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 11  
 

 

 CTCI WebSphere MQ Management 
 
MQ Configuration 

M

C

A

XMIT Queue

S
W
I
T
C
H

A
P
P

QMANAGER
(Local)

Remote
MQ

Application

MQLH

  

M

C

A
  

Remote
Queue
Defns

XMIT Queue
(Destined for remote Queues)

Local Queues

Local Queues

(Destined for remote Queues)

@ Nasdaq @ Subscriber

CH-1

CH-2

CH-3

CH-4

CH-1 -SVR to RQSTR Channel
CH-2 -SDR to RCVR Channel

CH-3 -SVR to RQSTR Channel
CH-4 -SDR to RCVR Channel

Primary Channel-pair is (CH-1 and CH-2)
Backup Channel-pair is (CH-3 and CH-4) 

Channel
Security

Exit

QMANAGER
(Remote)

Channel
Security

Exit

Remote
Queue
Defns

 
 
 All Channels are over TCP-IP links. The directed lines on CH-1, 2, 3 and 4 show the direction of the data-flow. 
 
The CTCI-MQ connection between the Nasdaq CTCI switch and the remote subscriber is through 
an MQ line handler for a remote/local queue pair. The Message queuing interface between the 
Nasdaq CTCI Switch and the subscriber is through a list of remote/local queue pairs defined at the 
Subscriber’s Queue Manager.   
 
Two pairs of channels are defined for the Primary and Alternate link. Each pair has one 
Server/Requester and one Receiver/Sender channel defined, a sender and requester channel 
defined at the Subscriber Queue Manager, and a receiver and server channel defined at the 
Nasdaq Queue Manager (see the CTCI-MQ Configuration Management section). 
 
The subscriber starts both the primary channels (sender and requester defined at the subscriber). 
 
In the event of a Primary IP-link failure, the SDR/SVR channels will try after short-timer (2) seconds 
for short-retry (5) times. After (2X5 =) 10 seconds, the subscriber should call its own procedure to 
switch to the Alternate link and connect and bring up the alternate channels (CH-3 and CH-4). Apart 
from establishing the link and re-authenticating, this procedure should also reset and  
re-synchronize the sequence numbers,  pick up the messages from the subscriber’s transmit queue 
and recommence transmission of messages in doubt and thereafter. It is the responsibility of the 
subscriber to develop this procedure.  
 
 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 12  
 

 

CTCI WebSphere MQ Management 
 
MQ Configuration (Contd.) 
 
An error queue should be defined at the subscriber end by the name ERROR.<SUBS>, where 
SUBS is the MMID (Market Maker Identifier) of the subscriber. In the event of a CTCI-MQ 
application error, the messages are passed back to this error queue along with a nine-byte  
CTCI-MQ error code (format: CTCI-MQnn) at the top of the message delivered. These CTCI-MQ 
error codes are listed in Appendix E of this document. 
 
Channel Security exits are executed immediately after the channel connection is established to 
authenticate the subscriber’s identity through MCAUSER and security data information. If a security 
breach should occur, the channel suppresses data transfers. No data would flow through the 
defined channel thereafter (see Authentication section), and a source code for security exits would 
be provided (see Appendix C of the document). 
 
The Remote/Local Queues, SVR, RQSTR, SDR, and RCVR Channel Definitions are documented in 
Appendix A of this document. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CTCI WebSphere MQ Management 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 13  
 

 

 
CTCI Physical Connectivity 
 

S
W
I
T
C
H

A
P
P

MQLH

MQLH

 Nasdaq @ TRU

Nasdaq @ DR

                                                             

IP Link1

IP Link3

IP Link4

Remote
MQ

Application

                                     

Remote Subscriber system

IP Link2

S
W
I
T
C
H

A
P
P

                                                             

                                                             

Subscriber QMAN

CTCI-MQ Physical Connection

IP-Link-1 - Primary
IP-Link-2 - Alternate

IP-Link-3 - Primary (Disaster Recovery)
IP-Link4 - Alternate (Disaster Recovery)

   QMAN  

   QMAN  

 
For every (SDR, RQSTR) channel pair at the subscriber, there exists an IP link. Two physical links 
(Primary and Alternate) from the subscriber to Nasdaq production and two physical links (Primary 
and Alternate) from the subscriber to the Nasdaq Disaster Recovery site must be defined. All 
configurations at the disaster recovery site would be similar to the one at the production 
environment except for the IP addresses and channel names. 
 
Note that, with the exception of the channels, the DR site is always ready. In the instance of a 
disaster, Nasdaq will notify the remote subscriber should to connect to the Primary DR IP-Link (IP-
link 3). 
 
At both Nasdaq Production and the Disaster Recovery site, the alternate link is a hot standby with a 
listener process up and running all the time.  

 
CTCI WebSphere MQ Management 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 14  
 

 

 
Connection Establishment and Recovery 
 
Establishment 
 
The subscriber establishes two TCP/IP connections with the server and receiver channels at 
Nasdaq using the IP address and the port number assigned during the MQ primary channel setup.  
 
The two primary channels (SDR and RQSTR at the subscriber end) should be established well 
before the market open.  
 
Note that the primary and alternate listener processes for the assigned port number would be 
functioning before the start of every market day at Nasdaq. Once the primary connection is 
established from the subscriber, the “Channel-Level Security Exit” would be invoked; the Security 
Exit at Nasdaq would authenticate the subscriber and, therefore, the data flow. In the event that the 
authentication fails, no data flows between the subscriber and Nasdaq. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 15  
 

 

CTCI WebSphere MQ Management 
 
Connection Establishment and Recovery (Contd.) 
 
Recovery 

NASDAQ ALTERNATE

X

X

X

X

S
U
B
S
C
R
I
B
E
R

N
A
S
D
A
Q

X =

D.R
Site

NASDAQ ALTERNATE

NASDAQ PRIMARY

NASDAQ PRIMARY(DR)

NASDAQ ALTERNATE(DR)

Subscriber Sender/Requester Channel Disconnect
 

Initially, the connection to the subscriber is through the Nasdaq PRIMARY link. If the link fails, the 
system should retry for 10 seconds before moving to the Nasdaq ALTERNATE link and connecting 
to the alternate channel pair. The data flow then resumes from where it stopped. If the Nasdaq 
ALTERNATE link fails to connect for another 10 seconds, the connection should revert back to the 
PRIMARY link. This back-and-forth cycle should continue for a time until a manual interruption 
takes it to the disaster recovery mode and connects it to the PRIMARY link of the DR site. This 
takes effect if disaster hits the Nasdaq production site, and Nasdaq identifies it as such and 
subsequently informs the subscriber. The listener processes for both PRIMARY and ALTERNATE 
links of the Nasdaq DR site are always ready for a connect from the remote subscriber. Therefore, 
when the subscriber connects to the Nasdaq DR PRIMARY link, the transmission would restart. 
 
The subscriber should implement for the DR site an identical retry logic to the one implemented at 
the Nasdaq production site between the PRIMARY and ALTERNATE links.   
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 16  
 

 

CTCI WebSphere MQ Management 
 
CTCI-MQ Configuration Management 

 
The Transmit Queue with the same name as the remote Nasdaq queue manager should be defined 
at the subscriber end. 
 
A sender and a requester type channel, one for the primary and the other for the alternate link, has 
to be defined at the subscriber end. 
 
A list of local queues and remote queues for every station has to be defined at the subscriber end. 
(See Appendix A.) 

 
             Channel security exits, compiled and bound in the MQ API source code, handle  

MCA User-level Security. (See the section on Authentication.)  
 

The following parameters would be set at the channel definitions: 
 
BATCHSZ as 50.   (at both SDR and RQSTR Channel definitions) 
HBINT as 10.   (at both SDR and RQSTR Channel definitions)        
SHORTTMR as 2.  (at SDR Channel definitions) 
SHORTRTY as 5. (at SDR Channel definitions) 
 
No LONGRTY and LONGTMR would be implemented. MQ-Sequence numbers will be reset 
through a RESET CHANNEL command at the start of every market day. Also, the “Sequence 
number wrap” will be set to 999999999. 

 
An electronic MQ Form will be supplied to every subscriber for creates/updates of the MQ 
configuration at the subscribing firm. (See Appendix B.) This facilitates Nasdaq and the subscriber 
in coding the MQ definitions appropriately. 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 17  
 

 

 CTCI WebSphere MQ Management 
  
 CTCI-MQ Programming Management 
 

MQ Message Delivery:  
All messages will be defined to be PERSISTENT across the board. 
Only STANDARD BINDINGS will be used.  

  Message delivery sequence will be defined as FIFO. 
  

MQMD MessDesc – is the Message Descriptor Structure (At MQPUT and MQGET) 
 
MessDesc.Expiry = MQEI_UNLIMITED 
MessDesc.Persistence = MQPER_PERSISTENT 
MessDesc.PutTime = time in ”HHMMSSCC” format 

 MessDesc.Encoding = MQENC_NATIVE 
 MessDesc.MsgId set to MQMI_NONE 
        MessDesc.Format set to MQFMT_STRING #  
 

# MQFMT_STRING should be used by the subscriber and by Nasdaq to implement   
GMO_CONVERT for translation. 
 
At MQCONN or MQCONNX: 
MQCNO_STANDARD_BINDINGS would be set at Connect Options. 

 
At MQOPEN: 

  While Opening an Output Queue: 
   Output Options set to  MQOO_OUTPUT +  MQOO_FAIL_IF_QUIESCING      

        
  While Opening an Input Queue: 
  Input Options set to MQOO_INPUT_AS_Q_DEF +  MQOO_FAIL_IF_QUIESCING 
 
       At MQGET and MQPUT:   
       MQGMO gmo  – is the Get Message Option Structure 

MQGMO_CONVERT (required)  
MQPMO pmo – is the Put Message Option Structure 
The subscriber is NOT limited by the usage of any other pmo or gmo options. 
 
Note that the CCSID used at Nasdaq is 819.  

 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 18  
 

 

 CTCI WebSphere MQ Management 
 
Authentication 

 
Authentication of subscribers at Nasdaq is achieved by implementing MCAUSER identifier at the 
subscriber’s sender and Nasdaq’s receiver channels in conjunction with Security Exit Routines at 
the MCA-level. (See Appendix A.) 

The channel exits provide for queue manager authentication via an exchange protocol between 
partner message channel agents. This assures that they are allowed to enter into a session with 
Nasdaq CTCI Switch. The function is implemented in the channel’s security exit.  
 

Queue Manager @ NASDAQ

M

C

A

M

C

A

SECURITYSECURITYSECURITY

Queue Manager @ Subscriber

 
 
Channel security exits are executed immediately after the channel connection is established to 
authenticate the subscriber’s identity through MCAUSER and security data information.  In the 
event of a security breach, the channel suppresses any function to the subscriber, thereby disabling 
message transfer. 
 
The programming logic of the security exit at both Nasdaq and the subscriber are explained on the 
following page.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CTCI WebSphere MQ Management 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 19  
 

 

 
Authentication (Contd.) 
 
The receiving channel initiates the handshaking procedure. The security exit is invoked by the 
following events: 

1. First, both channel security exits get called with MQXR_INIT. Both return MQXCC_OK to 
continue the communication. 

2. Next, the sender’s channel security exit gets called with MQXR_INIT_SEC. It builds the 
NAM and initiates the transmission of the NAM to the receiver’s channel security exit by 
returning MQXCC_SEND_SEC_MSG. It also requests a reply to be returned by the sender’s 
channel security exit. 

3. The receiver’ s channel security exit gets invoked with MQXR_SEC_MSG. It receives the 
NAM and checks its validity. If the NAM is not valid, the receiver’s channel security exit 
returns MQXX_SUPRESS_FUNCTION, which stops the communication. If the NAM is valid, 
the receiver’s channel security exit builds a NAM as an answer. The answer must contain 
the message content of the NAM, just received. It returns MQXCC_SEND_SEC_MSG, 
which initiates the transmission of the NAM to the sender’s channel security exit. 

4. Finally, the sender gets invoked with MQXR_SEC_MSG. It checks the NAM, and, if the 
NAM is valid, it returns MQXCC_OK, and the security environment is established. Now 
message transmission can begin. If the NAM was not valid, 
MQXCC_SUPRESS_FUNCTION will be returned to close the channel. 

 
NAM – Nasdaq Authentication Message 
 
In this authentication flow, Nasdaq will act as the receiver and the subscriber as the sender. 
 
Structure of NAM: 
 
struct { 

char mca_name[12]; 
char password[10]; 

} NAM; 
 
See Appendix C for subscriber sample channel security exit program. 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 20  
 

 

CTCI WebSphere MQ Management 
 
Authentication (Contd.) 
 

Exit @ NASDAQ (When in Agreement)
------------------------------------------------------------------

Invoked with MQXR_INIT
Responds with MQXCC_OK

------------------------------------------------------------------

------------------------------------------------------------------
Invoked with MQXR_SEC_MSG

Responds with MQXCC_SEND_SEC_MSG
<----------Sends the NAM back

------------------------------------------------------------------

Message Transfer Begins
------------------------------------------------------------------

Invoked with MQXR_TERM
Responds with MQXCC_OK

Exit @ Subscriber (When in Agreement)
----------------------------------------------------------------------

Invoked with MQXR_INIT
Responds with MQXCC_OK

-----------------------------------------------------------------------
Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG
Sends the NAM Message----------->

-----------------------------------------------------------------------

------------------------------------------------------------------------
Invoked with MQXR_SEC_MSG

Responds with MQXCC_OK

Message Transfer Begins
------------------------------------------------------------------------

Invoked with MQXR_TERM
Responds with MQXCC_OK

 

Exit @ NASDAQ (When NOT in Agreement)
------------------------------------------------------------------

Invoked with MQXR_INIT
Responds with MQXCC_OK

------------------------------------------------------------------
Invoked with MQXR_SEC_MSG

Responds with MQXCC_SUPPRESS_FUNCTION
Channel Closes

------------------------------------------------------------------

Exit @ Subscriber (When NOT in Agreement)
----------------------------------------------------------------------

Invoked with MQXR_INIT
Responds with MQXCC_OK

-----------------------------------------------------------------------
Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG
Sends NAM Message--------------->

------------------------------------------------------------------------
Invoked with MQXR_SEC_MSG

Responds with MQXCC_SUPPRESS_FUNCTION
Channel Closes

 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 21  
 

 

CTCI WebSphere MQ Management 
 
Naming Conventions 
 
All WebSphere MQ entities of CTCI-MQ Configuration follow WebSphere MQ naming standards.  
 
The Channel Naming convention: 
Production Channels: 
NASD.SUBS.PRI 
SUBS.NASD.PRI 
NASD.SUBS.ALT 
SUBS.NASD.ALT 
 
Disaster Recovery Channels: 
NASD.SUBS.DR.PRI 
SUBS.NASD.DR.PRI 
NASD.SUBS.DR.ALT 
SUBS.NASD.DR.ALT 
 
Queue naming convention: 
SUBS.<Station_ID> for Queues local to subscriber for the Station_ID  identified at the subscriber. 
NASD.<Station_ID> for Queues local to Nasdaq for the Station_ID identified at Nasdaq. 
Station_ID is a Station name or Device name (six characters maximum). 
 
The Error Queue Name ERRORQ.<SUBS> should be defined as a local queue at the subscriber 
end. 
 
Queue Manager Naming convention: 
NSSUBS (Nasdaq QMAN), SUBSNS (Subscriber QMAN). – [for platforms other than IBM] 
 
If the subscribers use shared Queue Managers, and when QMANs are limited to four-character 
names, the subscriber should specify this in the “Nasdaq MQ Definitions Form for Subscribers.” In 
the case of a duplicate, Nasdaq shall notify the subscriber. 
 
Transmit Queue Name: 
The Transmit Queue Name should be the same as the Remote Queue Manager Name. 
 
<SUBS> – 4 Character subscriber code – the MMID (Market Maker ID). 
  
The Nasdaq MQ Definitions Form for Subscribers, shown in Appendix B of this document, helps 
Nasdaq Configuration Management to avoid duplicates. 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 22  
 

 

Testing Procedure 
 
The testing procedure for every subscriber coming in through CTCI-MQ interface is as follows. 
 

- Fill in the Nasdaq CTCI-MQ Form for the test environment. 
- Set up MQ configuration definitions and remote MQ-API calls and authentication channel 

exit routines. 
- Establish a point-to-point link with Nasdaq, activate Queue Managers and Channels, and 

establish channel links. 
- Test Authentication procedures and data-flow through just one link. 
- Establish the complete CTCI-MQ environment topology and test the recovery procedures. 
- Test the CTCI-MQ switch application in its entirety. 
- Daily and periodic maintenance procedures have to be tested as well. 

 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 23  
 

 

Maintenance of CTCI-MQ Entities  
 
 

- Nasdaq will bring Channels down at the end of every market day. 
- All local and transmit queues should be cleared at the end of every day at both the Nasdaq 

and subscriber end. 
- It is preferable to end (endmqm) both the queue managers of the MQ topology and restart  

them (strmqm) at the beginning of every market day. 
 
 
Since each subscriber MQ application resides on different platforms, the established maintenance 
procedures have to be tested as part of the testing procedure.  



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 24  
 

 

Appendix A  
Sample MQ Definitions at Nasdaq and Remote Subscriber  
 @NASDAQ (NPSUBS)  
 
DEFINE QREMOTE(SUBS.CON001)  + 
       RNAME(SUBS.CON001) +    
       RQMNAME(SUBSNS) +       
       XMITQ(SUBSNS)           
                   : 
                   : 
 
DEFINE QREMOTE(ERRORP.SUBS)  + 
       RNAME(ERRORP.SUBS) +    
       RQMNAME(SUBSNS) +       
       XMITQ(SUBSNS)           
                              
DEFINE QLOCAL(SUBSNS) +        
       DESCR('TO.SUBS') +      
       PUT(ENABLED) +          
       GET(ENABLED) +          
       NOTRIGGER +             
       MAXDEPTH(9999999) +      
       USAGE(XMITQ)            
                                         
DEFINE CHANNEL(NASD.SUBS.PRI) +   
       CHLTYPE(SVR) +             
       XMITQ(SUBSNS) +            
       BATCHSZ(50) +              
       HBINT(10) +                 
       SHORTTMR(2) +              
       SHORTRTY(5) +             
       DISCINT(80000) +             
       SEQWRAP(999999999) +     
       TRPTYPE(TCP)             
                                
DEFINE CHANNEL(SUBS.NASD.PRI) + 
       CHLTYPE(RCVR) +          
       BATCHSZ(50) +            
       SEQWRAP(999999999) +   
       HBINT(10) +                 
       SCYEXIT(AUTH(‘CHANNELEXIT’)) + 
       MCAUSER(‘melon:harbor’) + 
       TRPTYPE(TCP)             
  
                                 
  

@SUBSCRIBER (SUBSNS) 
 
DEFINE QREMOTE(NASD.STN001)  +          
       RNAME(NASD.STN001) +             
       RQMNAME(NSSUBS) +                
       XMITQ(NSSUBS)                    
                   : 
                   : 
                                       
DEFINE QLOCAL(NSSUBS) +                 
       DESCR('TO.NASDAQ') +             
       PUT(ENABLED) +                   
       GET(ENABLED) +                   
       NOTRIGGER +                      
       MAXDEPTH(9999999) +               
       USAGE(XMITQ)                     
                                        
DEFINE CHANNEL(SUBS.NASD.PRI) +         
       CHLTYPE(SDR) +                   
       CONNAME(‘ppp.ppp.ppp.ppp(40500)') +  
       XMITQ(NSSUBS) +                  
       DISCINT(80000) +                 
       BATCHSZ(50) +                    
       HBINT(10) +                       
       SHORTTMR(2) +                    
       SHORTRTY(5) +                   
       SEQWRAP(999999999) +     
       SCYEXIT(AUTH(‘CHANNELEXIT’)) + 
       MCAUSER(‘melon:harbor’) + 
       TRPTYPE(TCP)             
                              
DEFINE CHANNEL(NASD.SUBS.PRI) +        
       CHLTYPE(RQSTR) +                
       CONNAME(‘ppp.ppp.ppp.ppp(40500)') + 
       BATCHSZ(50) +                   
       SEQWRAP(999999999) +            
       HBINT(10) +               
       TRPTYPE(TCP)                    
 
                          
 
 
 
    AUTH – Name of Security Program 
 
Continued 

  



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 25  
 

 

@ NASDAQ(NSSUBS Contd.) 
 
DEFINE CHANNEL(NASD.SUBS.ALT) + 
       CHLTYPE(SVR) +           
       XMITQ(SUBSNS) +          
       BATCHSZ(50) +            
       HBINT(10) +               
       SHORTTMR(2) +            
       SHORTRTY(5) +           
       DISCINT(80000) +         
       SEQWRAP(999999999) +  
       TRPTYPE(TCP)               
 
DEFINE CHANNEL(SUBS.NASD.ALT) +  
       CHLTYPE(RCVR) +           
       BATCHSZ(50) +             
       SEQWRAP(999999999) +  
       HBINT(10) +                        
       SCYEXIT(AUTH(‘CHANNELEXIT’)) + 
       MCAUSER(‘melon:harbor’) +                  
       TRPTYPE(TCP)              
 
DEFINE QLOCAL(NASD.STN001) +     
       MAXDEPTH(250000)           
                         : 
                         : 
                         : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: A similar set of definitions must be created 
at the Disaster Recovery site Queue Manager 
for all but the channel names that would be 
different. (See Naming conventions section). 
 

@SUBSCRIBER (SUBSNS Contd.) 
      
DEFINE CHANNEL(SUBS.NASD.ALT) +        
       CHLTYPE(SDR) +                  
       CONNAME(‘qqq.qqq.qqq.qqq(40500)') +  
       XMITQ(NSSUBS) +                 
       DISCINT(80000) +                
       BATCHSZ(50) +                   
       HBINT(10) +                      
       SHORTTMR(2) +                   
       SHORTRTY(5) +                  
       SEQWRAP(999999999) +           
      SCYEXIT(AUTH(‘CHANNELEXIT’)) +             

       MCAUSER(‘melon:harbor’) + 
       TRPTYPE(TCP)                   
                                       
 DEFINE CHANNEL(NASD.SUBS.ALT) +       
        CHLTYPE(RQSTR) +               
        CONNAME(‘qqq.qqq.qqq.qqq(40500))') + 
        BATCHSZ(50) +                  
        SEQWRAP(999999999) +           
        HBINT(10) +               
        TRPTYPE(TCP)                   
  
DEFINE QLOCAL(ERRORP.SUBS) +          
        MAXDEPTH(250000)                
                                      
 DEFINE QLOCAL(SUBS.CON001) +          
        MAXDEPTH(250000)                
 
                         : 
                         : 
                         : 
 
 
 
 
 
 
             
Four more channel definitions similar to the four 
mentioned above, with the exception of the 
names and IP addresses, have to defined for 
links to Nasdaq’s disaster recovery site. All 
defined at the same Queue Manager. 
                         

 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 26  
 

 

Appendix B 
Nasdaq MQ Definitions Form for Subscribers 
 
 
CTC-MQM RESOURCE DEFINITION: 
 
Firm Name       :   
MMID (Subscriber ID) :  
Contact: Name:__________________________ 
         Tel:___________________________ 
         e-mail:________________________ 
  
Environment 
 
Test/Production/Disaster Recovery(T/P/D):  
 
NASDAQ Defines 
 
Primary TCPIP address(Port #) : 
Alternate TCPIP address(Port #): 
 
Queue Manager Name    :                   
 
Channel definitions: 
 
Primary Server Channel Name :  
Primary Receiver Channel Name: 
Alternate Server Channel Name:  
Alternate Receiver Channel Name : 
 
(List all local queue names here)  
   
 
 
 
 
 

 
Contd. 
 
 
 
 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 27  
 

 

 
  
 
 

 
Firm Defines 
 
Queue Manager Name  :  
 
Primary TCPIP address(Port #) : 
Alternate TCPIP address(Port #) : 
 
Channel definitions: 
 
Primary Sender Channel Name:  
Primary Requester Channel Name:  
Alternate Sender Channel Name:  
Alternate Requester Channel Name:  
 
(List all local queue names here)  
 
 
 

 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 28  
 

 

Appendix C 
Sample Subscriber Channel Security Exit Source Code 
 /*********************************************************************/ 
/* Function: SMQAUTC         Nasdaq Stock Market Inc                 */ 
/* SMQAUTC is a Channel exit controlling function (Sender)           */ 
/* Code used at the Subscriber - DEAN (DEANWITTER)                  */ 
/*********************************************************************/ 
#include "cmqc.h" 
#include "cmqxc.h" 
#include "mqsvmht.h" 
 
char SEC_CTCI[11]; 
char MCA_USER[5]; 
 
struct { 
 char ctci_mca_name[12]; 
 char ctci_password[10]; 
} CTCI_NAM; 
 
MQ_CHANNEL_EXIT CHANNELEXIT; 
 
/* MQStart() */ 
 
short 
Read_Answer_NAM(char *Grecv, char *Hrecv, long Hlen) 
{ 
 memcpy(Grecv, Hrecv, Hlen); 
 strcpy(SEC_CTCI, "_PASSWORD_\0"); 
 strcpy(MCA_USER, "NASD\0"); 
 if (strncmp(Grecv, MCA_USER, 4) == 0) { 
   if (strncmp(Grecv+12, SEC_CTCI, 10) == 0) return(0); 
   else return(1); 
 } 
 else return(1); 
} 
 
void 
CTCISecurityExit(PMQVOID pChannelExitParms, 
                   PMQVOID pChannelDefinition, 
                   PMQLONG pDataLength, 
                   PMQLONG pAgentBufferLength, 
                   PMQVOID pAgentBuffer, 
                   PMQLONG pExitBufferLength, 
                   PMQPTR pExitBufferAddr) 
{ 
 char pBuff[22]; 
 char *pagBuf = ( char * ) pAgentBuffer; 
 PMQCXP pChlExParms = ( PMQCXP ) pChannelExitParms; 
 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 29  
 

 

PMQCD pChDef = ( PMQCD ) pChannelDefinition; 
 short buflen = 22; 
 short stat; 
 
 
 switch ( pChlExParms->ExitReason ) 
 { 
  case MQXR_INIT: 
    pChlExParms->ExitResponse2 = 0L; 
    pChlExParms->Feedback      = 0L; 
    pChlExParms->ExitResponse  = MQXCC_OK; 
    break; 
 
  case MQXR_TERM: 
    pChlExParms->ExitResponse  = MQXCC_OK; 
    break; 
 
  case MQXR_INIT_SEC: 
    switch ( pChDef->ChannelType ) 
    { 
      case MQCHT_SENDER: 
       /* Write the sending NAM message */ 
       *pExitBufferAddr = pBuff; 
       *pExitBufferLength = buflen; 
       sprintf(CTCI_NAM.ctci_mca_name, "MMID\0"; 
       strcpy(SEC_CTCI, "_PASSWORD_\0"); 
       memcpy(CTCI_NAM.ctci_password, SEC_CTCI, 10); 
       memcpy(pBuff, (char *)&CTCI_NAM, buflen); 
       *pDataLength = buflen; 
       pChlExParms->ExitResponse  = MQXCC_SEND_SEC_MSG; 
       pChlExParms->ExitResponse2 = MQXR2_USE_EXIT_BUFFER; 
      break; 
 
      default: 
      break; 
    } 
    break; 
 
  case MQXR_SEC_MSG: 
     switch ( pChDef->ChannelType ) 
        { 
        case MQCHT_SENDER: 
          /* Write your Read_Answer_NAM */ 
          stat = Read_Answer_NAM((char *)&CTCI_NAM, pagBuf, buflen); 
          if (stat != 0) { 
             pChlExParms->ExitResponse = MQXCC_CLOSE_CHANNEL; 
             pChlExParms->ExitResponse2 = MQXR2_USE_AGENT_BUFFER; 
 

}  else { 
                 pChlExParms->ExitResponse = MQXCC_OK; 
                 pChlExParms->ExitResponse2 = 0L; 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 30  
 

 

          } 
        break; 
 
        default: 
        break; 
      } 
    break; 
 
    default: 
    break; 
  } 
 } 
 
void 
MQENTRY CHANNELEXIT( 
PMQVOID pChannelExitParms,    /* Channel exit parameter block */ 
PMQVOID pChannelDefinition,   /* Channel definition           */ 
PMQLONG pDataLength,          /* Length of data               */ 
PMQLONG pAgentBufferLength,   /* Length of agent buffer       */ 
PMQVOID pAgentBuffer,         /* Agent buffer                 */ 
PMQLONG pExitBufferLength,    /* Length of exit buffer        */ 
PMQPTR pExitBufferAddr)       /* Address of exit buffer       */ 
{ 
PMQCXP pCEP = pChannelExitParms; 
PMQCD pCD = pChannelDefinition; 
MQLONG ExitId = pCEP->ExitId; 
/* MQLONG ExitReason = pCEP->ExitReason; */ 
pCEP->ExitResponse = MQXCC_OK ; 
 
/* Call the handling function according to the ExitId  */ 
/* By default, there are no exits. If there are, then  */ 
/* this function will have been replaced by a bind     */ 
 
switch (ExitId) 
{ 
case MQXT_CHANNEL_SEC_EXIT: 
if (strlen(pCD->SecurityExit) == 0) 
{ 
 pCEP->ExitResponse = MQXCC_SUPPRESS_FUNCTION; 
} 
else 
{ 
 /* Call the security exit function here */ 
     CTCISecurityExit(pChannelExitParms, 
 
                    

pChannelDefinition, 
                        pDataLength, 
                        pAgentBufferLength, 
                        pAgentBuffer, 
                        pExitBufferLength, 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 31  
 

 

                        pExitBufferAddr); 
} 
break; 
 
default: 
/* if the exit isn't recognized, stop it from being called again */ 
pCEP->ExitResponse = MQXCC_SUPPRESS_EXIT ; 
} /* switch */ 
return; 
} 
 
/********************************************************************/ 
/* END OF smqautc                                                   */ 
/********************************************************************/ 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 32  
 

 

Appendix D  
References 
 
Computer-to-Computer Interface Utilizing the NASDMS Switch  



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 33  
 

 

Appendix E  
CTCI-MQ Errors 
 
These error messages are CTCI-MQ line-handler application-specific error messages returned from 
Nasdaq to the ERRORQ.<SUBS> queue at the subscriber. The format is usually a nine-byte code 
followed by a 55-byte decode string explaining the cause or reason for the error. If some data has 
to be returned to the subscriber, this data will follow the 64-byte header. The maximum size of this 
message is 1100 bytes (64+1036). 
 
 
CTCI-MQ01 –  CTCI-MQ Version Error 
CTCI-MQ02 –  Message Length Mismatch  
 
 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 34  
 

 

Appendix F  
Glossary  
 
API: WebSphere MQ Application Programming Interface. 
 
API calls: The WebSphere MQ connect, disconnect, open, put and get calls used by the API. 
 
Channel Security Exit: A user-written program that can be entered from one of a defined number 
of places during channel security operation. 
 
Channel Specific Entities: 
BATCHSZ – Batch Size; the maximum number of messages to be sent before a syncpoint is taken. 
The batch size does not affect the way the channel transfers messages. 
MCAUSER – MCA user identifier. 
HBINT – Heartbeat Interval; the time in seconds that is to elapse between heartbeat flows. 
SHORTTMR - The approximate interval in seconds that the channel is to wait before trying to 
re-establish connection during the short retry mode. 
SHORTRTY - Specifies the maximum number of times that the channel is to try allocating a 
session to its partner during the short retry mode. 
LONGTMR - The approximate interval in seconds that the channel is to wait before retrying to 
establish connection during the long retry mode. 
LONGRTY - Specifies the maximum number of times that the channel is to try allocating a 
session to its partner during the long retry mode. 
 
Connection: Transmission path (including all equipment) between a sender and receiver. 
 
CSA: Channel Security Authenticator. 
 
CCSID: The Coded Character Set ID (CCSID), also called a Code Page, is a number assigned to a 
particular method of representing data. 
 
CCSID 819: This is the ISO 8859-1 standard Western European ASCII code page. 
 
CTCI: Computer to Computer Interface; the facility that allows subscribers to send and receive 
Nasdaq securities transactions from/to a subscriber host computer. 
 
DR: Disaster Recovery. 
 
FIFO: First In First Out – no special priorities. A queuing technique in which the next item to be 
retrieved is the item that has been in the queue for the longest time.  
 
HHMMSSCC: Method of formatting the time day in hours, minutes, seconds and hundredths of 
seconds.  HH = Hours in military time (00-23), MM = Minutes (00-59), SS = Seconds (00-59) CC = 
hundredths of seconds (00-99).   For example: 9 a.m. is 09000000, 1:35PM is 13350000, 35, and 
98/100 seconds past midnight is 00003598. 
 
IP Address: The IP address along with the Well Known Port is used to establish a connection to  
 
 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 35  
 

 

Nasdaq in order to send and receive CTCI MQ Messages. Nasdaq assigns the IP address. 
 
Listener:  In WebSphere MQ distributed queuing, a program that monitors for incoming network 
connections. 
 
Local Queue:  A queue that belongs to the local queue manager. A local queue can contain a list 
of messages waiting to be processed. Contrast with remote queue. 
 
MCA:  Message channel agent. A program that transmits prepared messages from a transmission 
queue to a communication link, or from a communication link to a destination queue. 
 
MCAUSER: MCA user identifier defined at the channel definitions. 
 
Message Descriptor: Control information describing the message format and presentation that is 
carried as part of a WebSphere MQ message. The format of the message descriptor is defined by 
the MQMD structure. 
 
MMID: Market Maker Identifier also referred to here as the subscriber ID. 
  
 
NAM:  Nasdaq Authentication Message – Used between the Channel Security Authenticators at 
Nasdaq and the subscriber to avoid security breach. 
 
Nulls: The value of the lowest occurrence in the ASCII character set (Binary zero). 
 
Persistence: A mechanism by which messages survive a restart of the queue manager. 
 
Queue Manager: A system program that provides queuing services to applications. It provides an 
application programming interface so that programs can access messages on the queues that the 
queue manager owns.  
 
Remote Queue: A queue belonging to a remote queue manager. Programs can put messages on 
remote queues, but they cannot get messages from remote queues. Contrast with local queue. 
 
STANDARD BINDINGS:  The Option in MQ connect that guarantees queue manager integrity. 
MQCONNX (like MQCONN) implies two logical threads where the WebSphere MQ application and 
the local queue manager agent run in separate processes. The WebSphere MQ application 
performs the WebSphere MQ operation and the local queue manager agent performs the 
application operation. This is defined by the MQCNO_STANDARD_BINDING option on the 
MQCONNX call. This default maintains the integrity of the queue manager (that is, it makes the 
queue manager immune to errant programs). 
 
TCP/IP: Transmission Control Process/Internet Protocol, a method that allows communications to 
take place between heterogeneous systems in a multi-network environment (Internet).  
 
 
 
 
Transmission Queue:  A local queue on which prepared messages destined for a remote queue 
manager are temporarily stored. 



 Nasdaq CTCI-MQ Subscriber Intercommunication Specification 36  
 

 

 
WebSphere MQ: A family of IBM-licensed programs that provides message queuing services. 
 
Well Known Port: Identifier (5 bytes) combined with an IP Address to form a socket (connection) 
name.  Will be assigned by Nasdaq. 
 


